Pure Mathematics 2

Exercise 7C

1 a

x	$y=\mathrm{f}(x)$	$y=\mathrm{f}^{\prime}(x)$
$x<-9$	Positive gradient	Above x-axis
$x=-9$	Maximum	Cuts x-axis
$-9<x<0$	Negative gradient	Below x-axis
$x=0$	Minimum	Cuts x-axis
$0<x<6$	Positive gradient	Above x-axis
$x=6$	Maximum	Cuts x-axis
$x>6$	Negative gradient	Below x-axis

b

x	$y=\mathrm{f}(x)$	$y=\mathrm{f}^{\prime}(x)$
All values of x	Positive gradient	Above x-axis with asymptote at $y=0$

1 c

x	$y=\mathrm{f}(x)$	$y=\mathrm{f}^{\prime}(x)$
$x<-7$	Negative gradient	Below x-axis with asymptote at $x=-7$
$-7<x<4$	Negative gradient	Below x-axis
$x=4$	Point of inflection	Touches x-axis
$x>4$	Negative gradient	Below x-axis

d

x	$y=\mathrm{f}(x)$	$y=\mathrm{f}^{\prime}(x)$
$x<-2$	Negative gradient	Below x-axis
$x=-2$	Minimum	Cuts x-axis
$-2<x<0$	Positive gradient	Above x-axis
$x=0$	Maximum	Cuts x-axis
$x>4$	Negative gradient	Below x-axis with asymptote at $y=0$

1 e

x	$y=\mathrm{f}(x)$	$y=\mathrm{f}^{\prime}(x)$
$x<6$	Positive gradient	Above x-axis with asymptote at $x=6$
$x>6$	Positive gradient	Above x-axis with asymptote at $x=6$

f

x	$y=\mathrm{f}(x)$	$y=\mathrm{f}^{\prime}(x)$
$x<0$	Negative gradient	Below x-axis with asymptote at $y=0$
$x>0$	Negative gradient	Below x-axis with asymptote at $y=0$

INTERNATIONAL A LEVEL

Pure Mathematics 2

2 a $y=\mathrm{f}(x)=(x+1)(x-4)^{2}=x^{3}-7 x^{2}+8 x+16$
When $y=0, x=-1$ or $x=4$
To find stationary points, $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$:
$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-14 x+8$
$(3 x-2)(x-4)=0$
$x=\frac{2}{3}$ or $x=4$
When $x=\frac{2}{3}, y=\left(\frac{2}{3}+1\right)\left(\frac{2}{3}-4\right)^{2}=\frac{500}{27}$
When $x=4, y=(4+1)(4-4)^{2}=0$
So $\left(\frac{2}{3}, \frac{500}{27}\right)$ and $(4,0)$ are stationary points.
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x-14$
When $x=\frac{2}{3}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=6\left(\frac{2}{3}\right)-14=-10<0$
So $\left(\frac{2}{3}, \frac{500}{27}\right)$ is a maximum.

When $x=4, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=6(4)-14=10>0$
So $(4,0)$ is a minimum.
b

x	$y=\mathrm{f}(x)$	$y=\mathrm{f}^{\prime}(x)$
$x<\frac{2}{3}$	Positive gradient	Above x-axis
$x=\frac{2}{3}$	Maximum	Cuts x-axis
$\frac{2}{3}<x<4$	Negative gradient	Below x-axis
$x=4$	Minimum	Cuts x-axis
$x>4$	Positive gradient	Above x-axis

c $\mathrm{f}(x)=(x+1)(x-4)^{2}=x^{3}-7 x^{2}+8 x+16$
$\mathrm{f}^{\prime}(x)=3 x^{2}-14 x+8$
$=(3 x-2)(x-4)$

Pure Mathematics 2

2 d $\mathrm{f}^{\prime}(x)=3 x^{2}-14 x+8$
$(3 x-2)(x-4)=0$
$x=\frac{2}{3}$ or $x=4$
When $x=0, \mathrm{f}^{\prime}(x)=8$
The points where the gradient function cuts the axes are $\left(\frac{2}{3}, 0\right),(4,0)$ and $(0,8)$.

